第2章 基礎理論

2.1. AE法

AEの発生源は、クラックの発生や成長、塑性変形、変態など、固体内部で生ずる局所的微小変化に基づく一次AE源（本来のAE）と、機械的摩擦や崩壊などのように、その他の原因で生ずる二次AE源の二つに分類される（1）。このうち、材料評価や構造物診断を行うときに対象となるのは、主として一次AE源である。また模擬AE源として、感度校正などによく用いられるシャープペンシル芯の圧折で生ずるAEも、一次AE源の一つとしてよく用いられる（1）。一方、機械要素の診断を行う際には、二次AE源が解析対象となる。

本来のAE現象そのものは、規模の非常に小さな地震と考えても全く差し支えないことが知られている。実際、AEの発生や伝播に関する理論的解析は、地震波動の理論（3）に基づいて行われてきた（4）。本章の2.1.1では、理解を容易にするために、極めて身近な現象である地震と対比させながら、AEについて説明する。続いて2.1.2において、理論的解析によりAE発生源のモデル化を行い、その弾性波動現象について考察する。さらに材料試験や構造物検査などで留意すべきAE波の反射や伝播の特性についてまとめて、実測されるAE波形例を紹介する。

ところで、今日行われるAE解析には、ヒット数、振幅値などの信号処理パラメータを用い、相関的AE活動度の変化を解析の対象とするパラメータ解析と、複数個の波形で構成されるAE波形セットに、2.1.2で示された理論に基づく解析を適用し、AE発生源に関する定量的情報を求めるようとする。原波形解析や、モーメントテンソル解析などの定量的波形解析がある。2.1.3ではパラメータ解析について述べ、2.1.4では定量的波形解析について説明する。

2.1.1. 地震とAE

2.1.1.1. 類似性と相違点

地震は極めて身近な現象である。地震国である日本に住む我々にとって、年に少なくとも数回以上の有感地震を経験することは、ごく普通のことであろう。時
として、その規模と、震源までの距離との関係で、関東大震災や兵庫県南部地震のように、関東大震災、阪神大震災などの大災害をもたらすことがある。

図2.1.1に、地震とAEについて模式的に示してある。いずれも、断層や、クラックなどの局所的変化（蓄積されたひずみエネルギーの解放）が、弾性体内で生じ、それが波動として伝わり、表面上で検出される現象とみなすことができる。地震の場合、震源域の大きさが100kmを越えることがある。しかしながら、それらの地球規模で考えるなら、局所的と考えても問題はない。

地震とAEの最大の違いは、図に示されているように、その寸法である。地震の震源域の大きさは、数100m～数100kmにまで及ぶ。一方、AEは生ずるクラックは、μmから、せいぜいmmの規模である。したがって、対象となる波動の周波数は、地震の場合主として0.01～10Hzであるのに対し、AEでは、1k～1MHzとなる。もう一つの違いは、その発生機構である。地震は、図2.1.2に示されるごとく、断層面に、力が加わることによりずれが生ずる際、すなわちせん断型の破壊が生ずるときに発生する。一方、AEは、地震と同様せん断型破壊の他に、破

図2.1.1 地震とAE

図2.1.2 断層による震源のモデル：Dは上盤の動き、Lは断層面の長さ、Wは断層面の幅、δは傾斜角、θは運動の方向φは観測点への方位をそれぞれ示す。
図 2.1.3 1932年11月13日の日本海北部深発地震の記録

図2.1.4 地震群の3つのタイプ
(a) 本震－余震型、(b) 前震－本震－余震型
(c) 群発地震型、前震にCとDの2つの型がある

図2.1.5 構造的不均一度の違う
各種脆性材料の主破壊前のAE活動度の変化
増面が引張されることにより発生する、引張型の破壊が生じるときににも発生する。通常はこれら2つの破壊様式が混在して見られるが、材料によってはどちらか一方の様式が優先的な場合や、破壊進行とともに、様式が変化することもある。

図2.1.3は、日本海内部で発生した地震の波形記録である。図に見られるように、震央からの距離が異なると、地震波の到達時刻が異なり、さらにP波、S波などの大きさや振動の向きも変化する。こうしたデータを詳細に検討することにより、震源の位置や、その発震機構が解明される。全く同じなことが、AE現象に対しても行われる。すなわち、複数個のセンサーで検出されたAE信号の到達時間差をもとにAE発生源の位置を決定し、また初期波の大きさや振動の向きを調べることにより、AEの発生機構を調べることができる。

地震とAEは、現象論的にもその類似性が指摘されている。図2.1.4は、限られた地域、期間に集中的に地震が発生する地震群のタイプを、模式的に示したものである。このうち(b)に示される前震をもとなうタイプは、AE現象との類似性が高い。実験室において、岩石に加えた力を次第に増加させていくと、主破壊の前に微小破壊が多数生じ、AE活動が急激に増加する場合が多い。こうした現象は、応力を一定に保つクリープ破壊の場合にも観察され、地震の前震活動は、破壊前のAE活動度の増加に相当するものであるとの解釈がなされている。図2.1.5に、材料中の不均一性の程度を表わす構造の不均一性の異なる岩石の、主破壊前のAE活動度が示されている。この図から明らかなように、不均一性が大きいほど、破壊前に観察される活動は大きい。こうしたAE活動と、地震活動を対比させることにより、地震現象を理解しようとする試みが行われている。

2.1.1.2 地震とAEの理論

すでに述べたように、地震もAEも、地殻あるいは材料などの弾性体において、局所的変化が生じたときに発生する。したがって、全く同一の理論に基づいて、両者を統一的に説明することができる。

自然界において、ある現象を記述するいは理解しようとするとき、その現象がどのように作用の影響として生じてきたかを知ることが重要である。言い換えると、対象となる系にある作用を与えた時、その系にどのような変化が生じるかその応答を調べることが、大きな意味を

図2.1.6 地震モーメントの変化を表す時間関数
持つ。与える作用とそれに対する応答を知るには、単位作用に対する応答を得ることが基本となる。この単位作用による系の応答を表わす2つの時空間の関数が、グリーン関数と呼ばれる。

地震は、地殻という大きな弾性体内部の断層面上でずれが生じ始め、図2.1.6に示されるように、短い時間（数秒）の間に最終的なずれ量に至るというステップ状の時間関数で変化が起きたときに、地表で観測される現象である。したがって、断層の位置、規模、ずれ量（くい違い量）、発生時間関数が与えれば、地殻（半無限帯）のグリーン関数を用いて、地表面上の応答である地動変位を理論的に求めることができる。また逆に、地動変位を計測すれば、グリーン関数を逆に作用させて、ずれ量や発生時間関数など、地殻の諸物理量を知ることができる。このことを模式的に示したのが図2.1.7である。ここでは、断層のずれ発生という入力作用に対して、グリーン関数（断層運動やクラックなどのように変位のくい違いをともなう場合には、第2種グリーン関数と呼ばれる）を用いて、震央からの距離が異なる地点に地震計をおいたときに、観測される地動変位が与えられている。このとき注意すべき点は、グリーン関数は、入力作用位置および地表の観測位置において、いずれもそれらを代表する点に対して与えられているということである。これは、震源の深さHあるいは震央距離rが、震源域（断層の大きさ）に比べ十分大きい場合、すなわち逆に言えば震源域がHやrに比べ十分小さく、点とみなせるときに成立する。一方、震源域の大きな地震が地表面近くで発生し、それらを震央近くで観測する場合には、作用点の移動を考慮し、それらの影響による応答をすべて合成した取り扱いを行う必要がある。

地震と全く同じ理論を、AEにも適用できる。AE源であるクラック発生に対して、グリーン関数による試験片上の応答変位が、理論的にも、また実験的にも求

図2.1.7 震央から地震計までの距離rの関数として与えられた上下方向の地動変位を表す模式図
められている。クラックの大きさは、試験片寸法に比べれば極めて小さく、点音源とみなせる場合がほとんどであるため、この理論をAEに適用するのは容易であり、多くの良好な結果が得られている。

地震の大きさや強さを表わすには、震度やマグニチュードを用いるのが一般的である。震度は、人間の感覚や、建物の壊れ具合から判断される。この指標は、震源からの距離、観測点の地盤、地形などに依存するので、地震の絶対的な大きさを表わす量ではない。一方、マグニチュード（M）は、ある一定の条件のもとに観測された地震波の振幅の対数によって定義される。Mに関与する重要な物理量は、断層面の大きさS、くい違いの大きさD、くい違いの立上がり時間τ（いずれの開始から終了までの時間）などである。それぞれの物理量は、地震波の振幅に関係し、その役割は周期によって異なる。Mはある特定の周期を持つ地震波の振幅から求められるため、どの周期の波を用いたかにより、あるときはSやDを表わし、またあるときはDやτを表わすというように、その意味が異なってくる。Mが便利なのは、比較的容易に決めることができることと、地震の大きさを一つの量で表示することができるからである。

<table>
<thead>
<tr>
<th>地震</th>
<th>年月日</th>
<th>Ms</th>
<th>Mw</th>
<th>L（km）</th>
<th>W（km）</th>
<th>D（m）</th>
<th>τ（s）</th>
<th>v（km/s）</th>
<th>Δσ（bar）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.関東</td>
<td>1923年9月1日</td>
<td>8.2</td>
<td>-</td>
<td>7.6</td>
<td>130</td>
<td>70</td>
<td>2.1</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>2.丹後</td>
<td>1927年3月7日</td>
<td>7.75</td>
<td>-</td>
<td>0.46</td>
<td>35</td>
<td>13</td>
<td>3</td>
<td>6</td>
<td>2.3</td>
</tr>
<tr>
<td>3.北伊豆</td>
<td>1930年11月25日</td>
<td>7.1</td>
<td>-</td>
<td>0.2</td>
<td>20</td>
<td>11</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.三陸</td>
<td>1933年3月2日</td>
<td>8.3</td>
<td>-</td>
<td>43</td>
<td>185</td>
<td>100</td>
<td>3.3</td>
<td>7</td>
<td>3.2</td>
</tr>
<tr>
<td>5.島取</td>
<td>1943年9月10日</td>
<td>7.4</td>
<td>-</td>
<td>0.36</td>
<td>33</td>
<td>13</td>
<td>2.3</td>
<td>3</td>
<td>2.3</td>
</tr>
<tr>
<td>6.東南海</td>
<td>1944年12月7日</td>
<td>8.2</td>
<td>-</td>
<td>15</td>
<td>120</td>
<td>80</td>
<td>3.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.南海道</td>
<td>1946年12月20日</td>
<td>8.2</td>
<td>-</td>
<td>15</td>
<td>120</td>
<td>80</td>
<td>3.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8.福井</td>
<td>1948年6月28日</td>
<td>7.3</td>
<td>-</td>
<td>0.33</td>
<td>30</td>
<td>13</td>
<td>2</td>
<td>2</td>
<td>2.3</td>
</tr>
<tr>
<td>9.十勝沖</td>
<td>1952年3月4日</td>
<td>8.3</td>
<td>-</td>
<td>17</td>
<td>180</td>
<td>100</td>
<td>1.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10.チリ</td>
<td>1960年5月22日</td>
<td>8.3</td>
<td>-</td>
<td>2700</td>
<td>800</td>
<td>200</td>
<td>24</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>11.北極</td>
<td>1961年8月19日</td>
<td>7.0</td>
<td>-</td>
<td>0.09</td>
<td>12</td>
<td>10</td>
<td>2.5</td>
<td>2</td>
<td>3.0</td>
</tr>
<tr>
<td>12.千島</td>
<td>1963年10月13日</td>
<td>8.2</td>
<td>5.7</td>
<td>75</td>
<td>250</td>
<td>150</td>
<td>3</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>13.アラスカ</td>
<td>1964年3月28日</td>
<td>8.5</td>
<td>6.2</td>
<td>750</td>
<td>500</td>
<td>300</td>
<td>7</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>14.新潟</td>
<td>6月16日</td>
<td>7.4</td>
<td>6.1</td>
<td>3.2</td>
<td>80</td>
<td>30</td>
<td>3.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15.十勝沖</td>
<td>1968年5月16日</td>
<td>8.0</td>
<td>5.9</td>
<td>28</td>
<td>150</td>
<td>100</td>
<td>4.1</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>16.埼玉</td>
<td>7月1日</td>
<td>5.8</td>
<td>5.9</td>
<td>0.019</td>
<td>10</td>
<td>6</td>
<td>0.92</td>
<td>1</td>
<td>3.4</td>
</tr>
<tr>
<td>17.北海道東方沖</td>
<td>1969年8月11日</td>
<td>7.8</td>
<td>7.1</td>
<td>22</td>
<td>180</td>
<td>85</td>
<td>2.9</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>18.根室沖</td>
<td>1973年6月17日</td>
<td>7.7</td>
<td>6.5</td>
<td>6.7</td>
<td>60</td>
<td>100</td>
<td>1.6</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

M:表面波マグニチュード、Ms:実体波マグニチュード、Mw:地震モーメント、L:断層の長さ、W:断層の幅、
D:くい違い、τ:くい違いの立ち上がり時間、v:破壊速度、Δσ:応力降下量

表 2.1.1 地震の大きさ
断層運動の静的な大きさに関係する重要な物理量は、SおよびDである。地震モーメント \(M_0 \) は、式 (2.1.1) に示されるように、SとDの積に剛性率 \(\mu \) を掛け合わせた量として定義される。

\[
M_0 = \mu \cdot DS = \mu \cdot DLW
\]
(ただし、Lは断層の長さ、Wは幅)

なお、断層面の方向および運動の方向も上式で考慮すれば、テンソルとして定義でき、後に2.1.4で示されるモーメントテンソルが得られる。この場合 \(M_0 \) は、せん断転位におけるモーメントテンソルの大きさを表わす量であるため、地震の物理的な大きさを表示する上で、極めて重要な尺度である。表2.1.1に、よく知られた地震に対して、これらの諸物理量がまとめられている。

全く同様の解析をAE波に対しても行うことができる。この時得られるのは、AE源となったクラックの大きさ（面積）、くらい違い量、くらい違いの立上り時間、発生時間関数、方位、方向などである。

2.1.1.3. AE解析の2方面

AE解析には、計測方法やその目的、また解析項目の違いにより、2つの方面がある。一つは、通常の検出波形に信号処理を施し、適切なパラメータを抽出することにより、AE活動の相対的変化を評価するパラメータ解析である。もう一つは、前節に示された理論をAE波形に適用し、AE源の定量的情報を得ようとする定量的波形解析である。

図2.1.8は、パラメータ解析について模式的に示したものである。クラック発生が、引張試験片中において、ステップ状の時間関数で与えられている。AE波は、センサーに到達するまでに試験片内で、多数の反射やモード変換を繰り返す。このため、センサー到達時には、極めて複雑な波形を示すことになる。さらに、通常用いられる圧電型センサー自身も周波数特性を有するために、実際に得られる検出波形には、クラック発生の情報、試験片内のAE波伝播特性、センサー特性、のすべてを合成した情報が含まれている。こうした検出波形において、個々の情報を分離して解析することは不可能である。したがって、そのAE信号が持つ情報を適切に評価するために検出波形に信号処理を行い、特性パラメータが抽出される。このパラメータが示す時間履歴、相対的強度レベル、相関などを調べることにより、クラックの発生条件や成長特性を知ることができ、またAE発生要因の定性的な識別がある程度行える。

図2.1.9は、定量的波形解析について、模式的に示してある。いまクラックが図
中に示されるように、複雑な反射などを考えなくてすむ極めて大きな弾性体中で、ステップ状の時間関数 \(S(t) \) を発生させるとする。この時理論的には得られる震央上の変位波形 \(u(t) \) は、第2種グリーン関数を用いて、図のような与えられる。この波形は、特性が定量的に評価可能なセンサー、例えば変位測定型のセンサーを用いれば、容易に観察することができる。このような、AE波伝播媒体において、AE発生位置とAE波検出位置の入力応答の関係を規定するグリーン関数 \(G(t) \) がわければ、クラック発生による表面上の変位は理論的に求められる。逆に、変位測定型センサーのように特性のわかったセンサーで検出された波形 \(u(t) \) に、\(G(t) \)の逆関数 \(G^{-1}(t) \) を作用させれば、\(S(t) \)、すなわちAE発生源であるクラックの定量的情報を得ることが可能となる。こうした解析を適用することにより、クラックの大きさ、くい違い量、発生時間関数、方向、方位などの評価が行える。

2.1.2. AEの発生と伝播

2.1.2.1. AE発生源のモデル

AE計測とは、クラック発生などによる物体内の弾性波動を検出する計測法である。したがって、AE波形の理論的な解析には、以下の3点について考慮する
必要なある。

(1) AE 発生源のモデル

(2) 弹性波動としての固体中の波動の伝播挙動

(3) AE センサーの計測物理量とその絶対感度（詳細は第 3 章 3.1.で取り扱う）

いま、境界要素法 (Boundary Element Method: BEM) に基づく解析理論に従い、図 2.1.10 に示されるような物体 D の内部に 2 つの面 F^+ と F^- から構成される内部境界 F を考える。

AE の発生源であるクラックの形成とは、この 2 つの面がくい違うことにより、
面 F^+ と F^- 上の変位、あるいは応力ベクトルに、動的に不連続が生じた現象と考える。この時、図のように面 F 上の法線 n_i として、面 F 上のものを置き、さらに外部境界 S は十分遠くにあり、そこででの応力ベクトルと変位は 0 であると仮定している。ここで、D 内の点 x における時刻 t での変位 $u_i(x, t)$ は、応力ベクトルを $f_i(y, t)$、および変位の面 F^+ 上と F^- 上とのくい違い量（転移モデルのバーガースペクトルに相当）を $b_i(y, t)$ とおくと、

$$u_i(x, t) = \int \left[G_{i,j}(x, y, t) * f_j(y, t) + T_{i,j}(x, y, t) * b_j(y, t) \right] dF \quad (2.1.2)$$

（ただし、$G_{i,j}(x, y, t)$ はグリーン関数、$T_{i,j}(x, y, t)$ は第 2 種グリーン関数、* は時間に関するたたみ込み積分）

と表わされる (1)。これは、AE の発生源を一般化し、力のくい違い $f_i(y, t)$ と、変位のくい違い $b_i(y, t)$ で表現したものである。

クラック上の力学的条件を考えると、クラック面 F の端部を別として、クラック発生前後のいずれの場合でも力の釣り合いは満足しているはずである。したがって、力の不連続量 $f_i(y, t)$ はクラック形成に対しては、主な役割を果たしていないと考えられる。

そこで式 (2.1.2) を 2 つに分けると、
\[
\begin{align*}
\mathbf{u}(x, t) &= \int \mathbf{G}(x, y, t) \cdot \mathbf{f}(y, t) \, dF \\
\mathbf{u}(x, t) &= \int \mathbf{T}(x, y, t) \cdot \mathbf{b}(y, t) \, dF \\
&= \int \mathbf{G}_{ij} \mathbf{a}(x, y, t) \cdot \mathbf{b}(y, t) \, dF \\
&= \int \mathbf{G}_{ij} \mathbf{a}(x, y, t) \cdot \mathbf{b}(y, t) \, dF
\end{align*}
\] (2.1.4)

（ただし、\(C_{ijk} = \lambda \delta_{ij} \delta_{jk} + \mu (\delta_{ij} + \delta_{jk} + \delta_{ki}) \) は弾性定数、\(\mathbf{G}_{ij} \) はグリーン関数の空間変分、\(\lambda, \mu \) はレームの定数、または逆関数を指標（\(p,q,j,k \)）については、総和記号が省略されている。）

となる。ここに式（2.1.3）は、何かのかの力が物体に加えられた場合、たとえば後述する物体面上でのガラス管やシャープペンシル芯の圧折で生ずる AE に対応し、式（2.1.4）が、実際のクラック発生で生ずる AE（10）に対応する。

(1) 集中力の解放

半無限弾性体に瞬間的に作用する集中力により発生する弾性波動は、Lamb の問題（10）として古くから知られている。外力を計測点が同一面上である場合、（表面パルス解）および、外力が内部で生じ、それを外表面上で検出す場合（内部パ

図 2.1.11 半無限体表面で計測される変位波形の震央距離の違いによる変化
（\(r \)：震央距離、\(H \)：震源深さ）
ルス解）のいずれに対しても、理論的な数値解が求められている。図 2.1.11 は、この内部パルスの数値解を示したもので（13）、震源の深さ H、震央と計測点との距離を r とし、時間に関してステップ関数的に集中力が作用したときに、計測点における外表面と垂直方向の変位を r/H の関数として求めたものである。図のように表面変位波形は、r/H の変化に極めて敏感である。

図 2.1.12(a) は、表面パルスの理論波形である。これは図 2.1.11 において H=0 の場合に相当する。図 2.1.12(b) は、アメリカの NBS（現在は NIST）において実際に表面でガラス細管を圧折し、ステップ状の集中力を発生させた時に、表面変位を計測可能な容量型センサーで検出した波形である（14）。(a) に示される理論波形と、実際に得た検出波形 (b) は、極めてよく一致している。この計測は、反射波などの影響が出ないように、アルミニウム合金製の大きなブロックを用いて行われた。図 2.1.13 に、その計測装置が示されている。

図 2.1.12(b) ガラス細管の圧折による表面パルスの検出波形

図 2.1.13 NIST における AE 弾性波動計測システム
図2.1.14 (a) 内部パルスの実測上における
理論変位波形

図2.1.14 (b) 同容量型センサーによる
検出波形

図2.1.11において t=0、すなわち震央上で計測される内部パルスの理論波形が図2.1.14 (a) に、また容量型センサーで得た計測波形が図2.1.14 (b) に与えられている。この場合、圧折は図2.1.13に示されるように、容量型センサーの反対面で行われたため、実際には内部パルスを与えていなかった。しかしながら、少なくとも反射波が到達する以前の初期部分においては、内部パルスと同等と扱っても問題のないことが理解される。

図2.1.12および図2.1.14において、図中の P、S、R はそれぞれ P 波、S 波、表面波の到着を表わしている。このうち図2.1.12の R で示される表面波は、大きな振幅値と、鋭い立上がり時間を持ち、極めて広い周波数帯域を与えるため、AE センサーの絶対感度校正用 AE 源として、アメリカの NIST (National Institute of Standards and Technology) で用いられている (11)。

図2.1.15は鋼製厚板において、計測点と反対側の点でシャープペンシル芯を圧折した時に、市販の変位測定型センサーで検出した波形を示している (12)。t/H の

図2.1.15 内部パルスを発生させた時、変位測定センサーで観測された検出波形
図 2.1.16 (a) 無限板表面で作用する集中力による理論変位波形
図 2.1.16 (b) 鋼板表面でシャープベンシル芯を圧折した時検出した変位波形

関数として、理論的に得られた図 2.1.11 の内部パルスによる波形と、形状が極めてよく似ている。

一方、図 2.1.16 (a) に、無限板において、時間に関してステップ関数で集中力を作用させた時に、同一表面で検出される理论変位波形を、r/h（ただし r は作用点と計測点間の距離、h は板厚）の関数として表わしてある。また、図 2.1.16 (b) は、シャープベンシル芯を鋼板上で圧折したときに、変位測定型センサーで計測した波形である。図 2.1.16 (a) 中の U_2 (実線) で示される表面に対して垂直な変位は、同図 (b) に示される実測波形とよく似た形状を示している。したがって、シャープベンシル芯の圧折による AE 波動は、集中力が時間に関してステップ関数的に解放されて生じたものであることが、容易に理解される。

シャープベンシル芯の圧折による AE については、詳細な定量的解析が行われ
図2.1.17 シャープペンシル芯の圧折過程を表す時間関数Aとその表面変位波形B

ている（2）。いま AE の発生点（集中力の作用点）と計測点の位置が固定されているなら、式 (2.1.3) 中の空間に関する項はすべて定数で置き換えると、AE の発生からセンサーによる出力までは、時間のみに関する線形系として定式化できる。したがって集中力解放の時間関数を F(t)、媒体の応答関数を G(t)、センサーの伝達関数を H(t)、観測される波形を V(t) とすると、式 (2.1.3) は、

\[V(t) = G(t) \times F(t) \times H(t) \]

(2.1.5)

と書き換えられる。ここで、G(t) は、半無限体あるいは無限板の場合には理論的に与えられているので、H(t) が既知のとたええば容量型センサーを用いるなら、検出波形 V(t) から、F(t) は、式 (2.1.5) の逆たたみ込み積分を行い、

\[F(t) = V(t) \times G(t)^{-1} \times H(t)^{-1} \]

(2.1.6)

で得られる。

こうして得たシャープペンシル芯圧折による F(t) が、V(t) とともに図 2.1.18 に示されている。この図から明らかなように、F(t) は立上がり時間約 1 μs 程度を持つ、ステップ関数的な時間関数である。ここで、集中力の解放量は、ステップの大きさとして与えられる。図 2.1.18 は、径の異なるペンシル芯を圧折したときに生ずる力の解放量と変位量の関係を示したもので、たとえば 0.3mm 径の芯を圧折したときには、約 3.6N の力が解放され、その時の変位量は約 4.2×10^{-19}m であることがわかる。

このように、シャープペンシル芯圧折時に発生する AE については、詳細な定量的評価が行われている。このため、シャープペンシル芯の圧折は、センサー校正時の 2 次の標準 AE 発生源として、また構造物検査時のセンサー感度評価用擬似 AE 発生源として、広く用いられている。
図 2.1.18 シャープペンシル芯の圧折時に生ずる力の解放量と震央上の表面変位との関係

図 2.1.19 半無限体中の引張型クラック発生モデル

(2) クラックの発生

いま図 2.1.19 に示されるように半無限体表面から深さ H に発生する引張型 (Mode I 型) クラックを考える。この時、クラック発生で生じた変位くい違いのベクトル成分は、

\[\mathbf{b} = (b \sin \theta, 0, b \cos \theta) \]

またクラック面に垂直な単位法線ベクトルは、

\[\mathbf{n} = (\sin \theta, 0, \cos \theta) \]

を用いることにより、半無限体表面に垂直方向の変位として、
\[u_3(x, t) = \int \left[\lambda \mu \sin^2 C \right] G_{31.1}(x, y, t) + \lambda \mu \cos^2 C \right] G_{32.2}(x, y, t) + 2 \mu \sin C \cos C \right] G_{31.3}(x, y, t) + 2 \mu \sin C \cos C \right] G_{33.1}(x, y, t) \right] \ast b(y, t) \, dF \] (2.17)

が得られる。ここで、半無限体表面に水平なクラックの場合 C=0 であるから、式 (2.17) は、

\[u_3(x, t) = \int \left[\lambda \mu \right] G_{31.1}(x, y, t) + \lambda \mu \right] G_{32.2}(x, y, t) + 2 \mu \sin C \cos C \right] G_{33.1}(x, y, t) \right] \ast b(y, t) \, dF \] (2.18)

となる。

図 2.1.20 に、破壊じん性試験に用いられる CT 試験片において、引張型クラックが、約 0.25 μs の立上り時間を持つステップ状の時間関数で生じた時に、負荷方向と同一方向の震央と、垂直方向の震央上（この場合 C=90° に相当）で検出される、表面と垂直方向の理論変位波形が与えられている。CT 試験片は、半無限体と異なり、多くの境界を持たず、当然反射の影響を考慮する必要がある。しかしながら、反射波の影響のない、初期波形部分については、半無限体としての取り扱いを行っても、問題はないと考えられる。

図 2.1.21 に実際に軽鋼の破壊じん性試験を行い、その時容量型センサーで検出された波形と理論波形を比較してある。実測波形では、理論波形に比べ初動ピークの振幅が小さく、またピーク幅も広がっている。これは、クラック発生とともに生ずるクラック先端の移動によるものであると考えられている。
図 2.1.21 容量型センサーによる検出波形と理論変位波形の比較

写真 2.1.1 ステンレス肉盛接接部の母材からの剝離

図 2.1.22 円盤状クラックのモデル

さて、引張型クラックの典型的なものとして、写真 2.1.1 に示される、石油精製用脱硫塔など、高温・高圧水素環境下で使用されるステンレス肉盛接接部の母材からの剝離がある。この現象は、その形状から理解されるように、図 2.1.22 に示される半径 a の円板状クラックの発生としてモデル化できる。この時、2 つのクラック表面間の開口距離 [b] は、

\[[b] = 2h \sqrt{1 - r^2/a^2} \] \hspace{1cm} (2.19)

で与えられる。

ここで、考慮する領域に比べ、クラック面積 F が十分に小さいため、無限小とみなすことができ、またクラックがその中心 y で評価できると仮定すると、埋設された水平円板状クラック発生によると垂直方向の変位成分として、式 (2.1.4) より、

\[
u_3(x, t) = \int F \left[\lambda G_{31.1}(x, y, c, t) + \lambda G_{32.2}(x, y, c, t) \right. \\
\left. + (\lambda + 2 \mu) G_{33.3}(x, y, c, t) \right] b(y, c, t) dF \\
= \int F \left[\lambda G_{31.1} + \lambda G_{32.2} + (\lambda + 2 \mu) G_{33.3} \right] [b] dF \cdot S(t) \\
= [\lambda G_{31.1} + \lambda G_{32.2} + (\lambda + 2 \mu) G_{33.3}] V \cdot S(t) \] \hspace{1cm} (2.1.10)
が得られる。ただしこの時クラック体積 V は,

$$V = \frac{4}{3} \pi \cdot a^2 \cdot h$$

式 (2.1.11) および (2.1.10) に代入すると,

$$u_3 (x, t) = \left[\lambda \left(\varepsilon_{33} + \mu \varepsilon_{22} \right) \right] + (\lambda + 2 \mu) \left(\varepsilon_{33} \right) \frac{4}{3} \pi \cdot a^2 \cdot h \cdot S(t) \quad (2.1.12)$$

と書き直され、埋設された円板状クラック発生による表面変位 $u_3 (x, t)$ を求めることができる。

図 2.1.23 は、式 (2.1.10) において、単位体積 $V = 1$ のクラックが、図 2.1.24 の破線で示されるごとく、立上り時間 $2 \mu s$ のステップ状の時間関数的に生成したと仮定した時に、r/H（震央距離／深さ）が異なる地点、すなわち震央距離が異なる計測点で観測される変位波形の、シミュレーション解析を行って得た理論波形である (31)。図 2.1.11 に示される波形と同様に、クラック発生で生ずる波形も、r/H の変化に極めて敏感である。

図 2.1.25(a) は、肉盛接続部の剥離で生じたクラックによる AE を、$r/H = 5.4$ の計測点で、市販の変位測定センサーを用いて実測した検出変位波形である。また同図 (b) は、写真 2.1.1 参考にして、$a = 20 \mu m$、$b = 2 \mu m$ と仮定し、式 (2.1.10) を用いて数値計算した時に、$r/H = 5.4$ で観察されるべき理論変位波形を示している。両者は、反射などの影響の現れる以前の初期部分において、振幅値および時間軸に関して非常によく一致している。したがって、(a) に示される検出波形を生じさせたクラックは、(b) をえたクラックと、物理的現象として、大きな違いはないと考えることができる。さらに、実測変位に対して、式 (2.1.10) の逆たたみ込み積分を行うことで $S(t)$ が図 2.1.24 の実線で示されている。この結果は、破線で示される時間関数と比べ、形状は少し異なるが、立上り時間は約 $2 \mu s$ と一致している。したがって、このクラックの生成時間は約 $2 \mu s$ であると考えてよい。なお、この結果の詳細は、本論文第 4 章の 4.2 にまとめられている。

同様の解析を、低合金鋼の水素脆化割れに適用した結果 (31)が図 2.1.26 に与えられている。ただし、この場合は、水平クラックではなく、半無限体表面に対して傾きを持ったクラックである。その傾きおよびクラックの種類に関しては、2.1.4.3. に示されるモーメントテンソル解析を用いている。図中 A) は、変位測定センサーによる検出波形を、B) は第 2 種グリーン関数を、C) は、立上り時間 $0.55 \mu s$ のステップ状時間関数で、$6.4 \times 10^{-14} \text{m}^3$ の体積を持つクラックが生成したと仮定
図 2.1.23 震央距離が異なる計測点における埋設水平クラック発生による変位波形

図 2.1.24 クラック生成の時間関数 $S(t)$
（破線：シミュレーション解析に用いた $S(t)$、実線：検出波形の逆たたみ込み積分で得た $S(t)$）
図 2.1.26 低合金鋼の水素脆化割れで得られた結果
A) 変位測定センサーによる検出波形、B) 第 2 種グリーン関数、C) シミュレーション解析で得た理論波形、D) シミュレーション解析に用いた $S(t)$ と検出波から逆たたみ込み積分で得た $S(t)$
生したと考えてよいと判断される。

これらの例に示されるように、変位測定センサーで実測した検出波形と、理論的に得られるシミュレーション波形を比較することにより、発生したクラックの体積（すなわち面積がわかりれば開口量、また開口量がわかりれば面積）と、その生成時間を定量的に評価することが可能である。

(3) AE波の放射形式

AE発生源が、集中力の開放か、引張型クラックか、あるいはせん断型クラックかなど、形式（モード）が異なる場合、AE波の変位場の放射形式が異なることが知られている(1)。

図2.1.27 放射形式を表わす極座標系

いま、図2.1.27に示される極座標系の原点でAEが発生したとする。簡単のためφ=90°の場合を考えると、集中力の解放（単方向の力の発生）では、r方向の変位成分urは、図2.1.28(a)に示されるようにx3>0なら正方向の、またx3<0なら負方向の初動波立上りを与える。一方、引張型クラックにおいては、同図(b)に示されるごとく、urは全方位に対して正であり、最大値と最小値の比は\((\lambda+2\mu)/\lambda\)となる。またせん断型クラックの場合は、4象限型と呼ばれる特徴的

(a) 集中力 (b) 引張型クラック (c) せん断型クラック
図2.1.28 AE波の放射形式
図2.1.29 ノッチ付CFRP積層板の引張試験で検出された波形セット
(a)引張型クラック、(b)せん断型クラック

放射形式を与え、図2.1.28(c)に示されるように4つの象限でu_{ij}は正負交互に現われる。これらの特徴を利用して、AE発生源のモードを同定しようとする試みがなされている(11)。(17)。

図2.1.29に、板厚2.2mmのノッチ付CFRP積層板の引張試験時に、主なAE発生領域となるノッチ先端を中心として、異なる4つの象限でAE波を計測できるように配置した、4個のセンサーで検出した波形例を示す(11)。(a)においては、すべての象限で初動立ち上がり波は正しいであるため、このAE源は、引張型クラックの発生であると考えられる。一方(b)では、正負が各象限で交互に現れており、このAEはせん断型クラックによるものと判断される。図2.1.30は、試験片とノッチの位
図 2.1.30 試験片とノッチの位置、センサーの配置、および初動波の立上り方向を示す模式図

置、センサーの配置、そして初動波の立上り方向を模式的に示したもので、図 2.1.29 の (a) が Type A に、また (b) が Type B に対応する。この実験で、Type A は各層で生じたディボンディングの合体による引張型クラックの発生に、また Type B は、ディボンディングで生じたせん断型クラックの発生に対応すると考えられた。

このように、AE 波の放射形式に関する情報をもとに、AE 発生源となるクラックのモードを、ある程度識別できる。しかしながら、その解析精度は各センサーの配置、およびとりわけせん断型クラックではクラックの向きに強く依存し、正確な解析を行うためには、両者の間に、理想的関係の成立する必要がある。またクラックが混合型モードの場合、後述するモーメントテンソルを求める、クラック面の方位および運動方向を明らかにする必要がある。

2.1.2.2. AE 波の伝播

前節で示されたように、AE 波は、クラック発生などのエネルギー解放過程で生ずる弾性波動現象である。したがって、その伝播の仕方は、連続体中の変位の伝播を表わす波動方程式で説明される。

簡単のため、図 2.1.31 に示されるような、一様な太さの細い弾性体の棒を考える。その長さの方向に x 軸をとり、断面積を S、密度を ρ、ヤング率を E とする
る。いま縦波の通過によって、棒中の厚さΔxの微小部分ABがA'B'へと変化したとすると、B面の変位は、A面の変位をξ(x,t)として、

\[\xi + \Delta \xi \approx \xi + \frac{9 \xi}{9 x} \Delta x \]

と書ける。したがって、この微小部分の厚さはΔxから

\[\Delta x + \Delta \xi \approx \Delta x \left(1 + \frac{9 \xi}{9 x} \right) \]

(2.13)

へと変化することになり、\(9 \xi / 9 x \)は単位長さあたりの伸び、すなわちひずみを表すことになる。ここで

\[\left| \frac{9 \xi}{9 x} \right| \ll 1 \]

なら、応力はひずみに比例し、ヤング率を用いてE・9ξ/9xと書けることに注意すると、A'B'の両面を通してこの微小部分に働く力の合力は、

\[\left(E \frac{9 \xi}{9 x} + \frac{9}{9 x} \left(E \frac{9 \xi}{9 x} \right) \Delta x \right) S \cdot ES \frac{9 \xi}{9 x} = ES \frac{9^{2} \xi}{9 x^{2}} \Delta x \]

(2.14)

となる。式(2.14)でA'面を通しての力に負号がついたのは、x軸の負の側にある部分から働きかけが行われるためである。

この微小部分の質量はρSΔxであるから、式(2.14)を用いて、この部分についての運動方程式をたてると、

\[\rho \ S \Delta x \frac{9 \xi}{9 t^{2}} = ES \frac{9^{2} \xi}{9 x^{2}} \Delta x \]

となり、両辺をSΔxで割って、

\[\frac{9 \xi}{9 t^{2}} = v^{2} \frac{9^{2} \xi}{9 x^{2}} \]

(ただし \(v = \sqrt{E/\rho} \))

という波動方程式が得られる。これは細い弾性体の棒を伝わる弾性波の方程式である。その解は、よく知られているように

\[\xi(x,t) = A \sin(x-vt) + B \cos(x+vt) \]

(A,Bは定数)

で与えられる。

ここでは、棒の横方向の変形は全く考えていない。しかしながら、x方向に上記のような伸縮があるなら、ボアソン比vが0でない限り、横方向にも変形が現れるはずである。この点を考慮して、釣り合い式をたてると、それに従う波動はP波(Prima-ry Wave, 縦波)とS波(Secondary Wave, 横波)の2種類存在することが導かれ
いま、P波およびS波の伝播速度をそれぞれ\(v_p\), \(v_s\)とすると、\(\lambda\)および\(\mu\)をラメの定数として、

\[
v_p = \sqrt{\frac{\lambda + 2\mu}{\rho}} \quad \text{と} \quad v_s = \sqrt{\frac{\mu}{\rho}}
\]

（ただし、\(\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)} \quad \text{と} \quad \mu = \frac{E}{2(1+\nu)}\）

となる。したがって、\(v_p/v_s\)は、

\[
v_p/v_s = \sqrt{\frac{2(1-\nu)}{(1-2\nu)}}
\]

で与えられ、常にP波はS波より早く伝播することがわかる。

2.1.2.3 AE波の反射

AEセンサーは物体の表面に設置されているため、発生源から直接到達するP波やS波のほかに反射波を検出する。図2.1.32にこのことを模式的に示してある。すなわち弾性波が物体の表面に達すると、反射波が生ずる。この時、弾性波動のP波あるいはS波のみでは反射の際の境界条件を満足できないために、図のようにP波、S波いずれの成分が入射しても、必ず反射P波と反射S波が発生する。この入射角と反射角の関係はSnellの公式として知られており、たとえばS波の反射では、

\[
\frac{\sin \theta}{v_s} = \frac{\sin \theta'}{v_s} = \frac{\sin \theta''}{v_p}
\]

となる。これにより、明らかに\(\theta = \theta'\)が成立し、同じ波動成分については、入射角と反射角が等しいことがわかる。

図2.1.32 P波・S波の自由表面での反射

- 39 -
また式 (2.1.15) から、$v_r > v_s$であるため、$\theta < \theta^\circ$が導かれる。すなわち図 2.1.32 に示されるように P 波は S 波よりも常に表面に対して浅い角度で反射されることになる。ここで $\theta^\circ = 90^\circ$ の場合には、S 波の入射波が境界で反射して表面に平行に伝播する P 波を生ずる。これは、SP 波と名付けられ、その時の入射角、

$$\theta_c = \sin^{-1} \frac{v_s}{v_p}$$

は、臨界角と呼ばれる。図 2.1.32(c)に示されるように、AE 発生源から AE センサーへの入射角が式 (2.1.16)で求められる入射角よりも大きい場合には、センサーには図の (1)、(2)、(3) の順に P 波、SP 波、S 波が到達することになる(1)。

したがって、AE 波を実測する場合、たとえば試験片中で AE が発生した時に、直接センサーに入力される P 波や S 波のほかに多くの反射波が入力されるために、極めて複雑な波形が検出される。

2.1.2.4. AE 波の減衰

(1) 擴散損失

弾性波が空間を拡がるときには、球状になる。この球面波において、波動の全エネルギーは失われないとしても、球面の表面積は半径 r とすると $4\pi r^2$であるから、表面の単位面積当たりのエネルギーは、遠くになるにしたがい、$1/4\pi r^2$の比率で減少する。したがって球面波において、振幅値 A は、$1/r$ に比例して減少する。

次に平面波の場合は、図 2.1.33 に示されるように y 軸方向に対して変化は全くなく、x 軸方向に対して、表面積を一定に維持したままで、弾性波が伝播するので、振幅値に変化は生じない。

図 2.1.33 平面波の説明図

図 2.1.34 円筒波の説明図
一方、図 2.1.34 に示される円筒波の場合、z 方向には全く同一で平面波的であるが、r θ 面では円形に拡がる。このため、エネルギーは 2π r で拡がることになり、単位面積当たりのエネルギーは 1/2π r に比例して減少する。したがって、振幅値は 1/√r に比例して減少する。

実際に試験片、あるいは構造物において AE 波が伝播するときには、たとえば板厚の大きな CT 試験片や、コンクリート製ブロックにおいて、反射波の生ずる以前の段階では球面波に、またパイプの壁面を伝わる弾性波は平面波に、さらに圧力容器や球型タンク、あるいは円筒型タンクの広く拡がる板内を AE 波が伝わる場合は円筒波に類似した挙動を示すことになる。

（2）減衰の原因

AE 波が媒体中を伝播する際に、前述した、波頭面が拡がるために生ずる拡散損失の他に、たとえば金属においては、内部摩擦、および組織境界における散乱のために、所定の方向に進む波動が減衰する。

一般に弾性波が媒体中を x 方向に伝播する場合に、その振幅値が減衰する模様は、拡散損失のない平面波に対して、次式で表わされる。

$$A_x = A_0 e^{-\alpha x}$$

ここで、A₀ は x=0 における振幅値、また Aₓ は距離 x を伝播後の振幅値、α は減衰定数である。

減衰の原因にはいろいろあるが、金属、特に多結晶体金属を弾性波が伝わる場合の主なものは、結晶粒界および組織境界による散乱減衰、粘性減衰、転位の運動による減衰などである。

多結晶体における結晶粒子による散乱では、減衰定数 α と周波数 f との間には、波長が結晶粒より大きい場合に、

$$\alpha = Af + Bf^4$$

（A、B は定数）

が成立する。第 1 項 Af はヒステリシスによる吸収で、第 2 項は結晶粒による Rayleigh 散乱に基づく減衰である。

また粘性減衰は、内部摩擦に基づくものである。固体の内部摩擦は、大別すると緩和現象と、ヒステリシスに区別される。このうち金属の場合には、AE 波の周波数帯域で、緩和の影響はほとんど問題にならない。ヒステリシスによる減衰の特徴は、1 サイクルについての減衰が周波数によらず一定なことである。したがって α は f に比例する。

一方、転位の運動による減衰は、
\[\alpha = \text{Cr} + \text{Dr} ^ 2 \] （\(\text{CD} \) は定数）

で表わされる。Cr の項は、転位が運動する際、原子と原子との間に何らかの不可逆的変化が生ずるためであり、Dr の項は、不純物や空孔などによって止められた転位が、あたかも弾が振動するかのごとく振動するために生ずると考えられている。

いずれの原因による減衰であっても、これまでに示してきた関係から明らかのように \(\alpha \) の値は \(f \) が大きくなるとともに、大きくなる。したがって、減衰量は周波数に依存し、周波数が大きければ大きいほど減衰量も大きくなることが理解される。

金属材料とは異なり、複合材料であるコンクリートや FRP では、その不均一性を十分考慮する必要がある。コンクリートでは骨材とモルタルの付着界面での、また FRP では繊維と母材界面における反射等による散乱の影響が現われ、減衰特性を大きく左右すると考えられる。一般にコンクリートの場合、水、セメント、骨材の配合比や、骨材の形状や寸法等に、また FRP では繊維の方向、材質、体積比などに減衰特性は強く依存する。

（3）減衰曲線の実例

実験室において、寸法の比較的小さな試験片内で発生する AE を検出し、評価する場合に、反射の影響は十分考慮する必要があるが、AE 波の減衰が計測に際して問題となることは、ほとんどない。しかしながら、実機構造物で発生する AE を計測する場合には、有効信号を検出すためのしきい値を設定したり、セ

![Image](image.png)

図 2.1.35 肉厚 23cm の圧力容器表面上における減衰特性 （150kHz 共振型センサー）

- 42 -
ンサーの配置を決めるに際し、構造物中の減衰特性が極めて大きな意味を持つ。

図 2.1.35 は、圧力媒体となる水を満たした、肉厚 23cm を持つ圧力容器の表面上で、センサーからの距離が 1m、3m、10m および 20m の地点で、径 0.3mm、硬さ 2H のシャープペンシル芯を 10 回圧釘し、その平均振幅値を距離の関数として表示した減衰曲線である (11)。この計測では、圧力容器全表面上で、平面位置標準を行うために配置した 150kHz 共共振型センサー間の最大距離は 5.5m であった。図からわかるように、センサー間距離 5.5m における減衰量は、約 13dB と非常に小さな値である。したがって、この圧力容器は AE 信号の検出に対して極めて良好な音響特性を有しており、耐圧試験時に外部円筒表面上で、容易に AE 信号の位置標準を行うことができた。

図 2.1.36 は、6.5m × 6.5m × 1.75m の大きさのコンクリートブロック上で得た AE 波の減衰特性である (11)。径 0.5mm、硬さ 2H のシャープペンシル芯を、センサーから所定の距離で圧釘したときに、150kHz 共共振型および 60kHz 共共振型センサーで検出した振幅値の平均値を、距離の関数として示している。図からわかるように、60kHz 共共振型センサーで検出される AE 信号に比べ、より高周波成分を検出する 150kHz 共共振型センサーで測定される減衰量ははるかに大きい。40dB（センサー出力 100 μV）のしきい値を設定した場合、このコンクリートブロック上において、150kHz 共共振型センサーでは 30 〜 40cm、また 60kHz 共共振型センサーでは、約 2.5m 程度の範囲で発生する AE 信号を検出可能であった。

図 2.1.37 に、発電用大型ボイラの水冷壁下における AE 波の減衰特性が示してある (11)。水冷壁は、縦に並んだ多数のチューブを溶接した複雑な構造をしている。したがって、AE 波の伝播に関して、その音響特性は良好とはいえない。通常用

図 2.1.36 コンクリートブロック上の減衰特性
いられる 150kHz 共振型センサーが対象とする周波数帯域では、多数のチューブを横断する測定方向の減衰量が極めて大きく、計測可能な範囲は数 10cm 以下であった。しかしながら、60kHz 共振型センサーを用いれば、図に示されるように、数 m にわたって、シャープペンシル芯の圧縮による AE 信号を検出することができた。この計測において、しきい値を 46dB（センサー出力 200 μV）に設定した場合、約 5m 程度離れた地点で入力した擬似 AE 信号も検出可能であった。

以上示したように、AE 波の減衰特性は、計測対象となる構造物の材質、形状、構造などに強く依存する。したがって、実構造物で AE 計測を行う際には、AE 波の減衰特性を事前に調査する必要がある。その結果をもとに、使用するセンサーの周波数帯域、センサーの配置、計測しきい値などを決定し、有効信号をできる限り多く検出できるように計測条件を設定することが重要である。

2.1.2.5. 板波の伝播

圧力容器や球型タンクなどの板内を伝わる波動は、2つの板面の影響を受けて、ある条件を満足する時よく通過する。この条件は、周波数と板厚と音速（位相速度）と時間に一定の関係を満足するものである。

板波は狭義に使う時は板中の波動 Lamb (ラム) 波のことを意味するが、丸棒、角棒、管の波も定性的によく似た点が多いので、広義にはこれらの波動も含まれる。板中の波動は種類が多く、次のように分類される。

(1) 振動方向による分類

粒子の振動方向が板面に平行な横波は、一般に SH 波と呼ばれ、板面にあたっ
ても反射波は横波の SH 波だけであるので、純粋に横波の板波を生じる。ただし、板厚の影響により特殊な波も発生する。これは Love (ラブ) 波と呼ばれる表面波に属する。図 2.1.38(a)は、SH 波に対する振動方向の説明図である。これに対し同図 (b) に、ラム波の粒子振動方向を示す。無限体ならば、進行方向に平行な縦波成分 (P 波) と、進行方向に垂直な横波成分 (SV 波) が一体となり波動をつくる。これが板厚の影響を受けるとラム波と呼ばれる特殊な板波が発生する。その粒子の振動は、進行方向成分と進行方向に垂直な成分の和で、一般に楕円運動を行う。

(2) 板面の境界条件による分類

板の両面が空気に対接している時は、板波は全反射すると考えてさしつかえない。板面の片側あるいは両側が、固体もしくは液体に接している時は、反射波と透過波が存在し、波動の取り扱いも異なり複雑になる。図 2.1.39 に、各種境界の状態が示されている。同図 (c) の場合に SH 波の進行により発生するのがラブ波である。両面空気に対接している (a) 以外は、AE 波のエネルギーは、他の質に伝わり減衰するので、減衰は大きくなる。ラム波が (b) の状態に入ると、表面で進行方向に垂直な成分が大きい場合に、液体中に進行方向に平行な波となってエネルギーが放射されるため、以後減衰により伝播しにくくなる。一方、表面の垂直成分が小さいときには、平行成分が大きくてもエネルギーの損失は小さいために、ラム波としての性質を維持したまま伝播を続ける。
(3) 変位分布による分類

板中における粒子の振動の大きさと方向が異なることから、板波は、大きく2種の波動モードに分類される。図2.1.40は、ラム波の2つのモード、対称波と斜対称波を説明したものである。各点の振動の瞬時の動きが、矢印で示されている。これらの波動は、さらに板中の振動の節（正確には変位分布の様子）により、対称波の$S_0, S_2, \cdots \cdots$、および斜対称波の$A_0, A_2, \cdots \cdots$のように多数のモードに分類される。

この変位分布の中で、特異なものとして、ラム波の$S_0 A_0$の一種で、板厚が極めて厚くなった場合の波動がある。これは、Reyleigh Waveまたは表面波と呼ばれ、波動エネルギーが表面近くの数波長内に集中している。

(4) 群速度

板波が伝播するとき、板面の境界条件により、伝播速度に制限を及ぼす波動方程式が導かれる。この制限は、板厚×周波数×ポアソン比の間に一定の関係を保つもので、数値計算によりその解を求めることができる。図2.1.41は、こうして得られた結果で、銅板に対して各波動モードの群速度と、周波数×板厚との関係が示されている。この図から、板内を伝わるAE波が広い周波数帯域を持ち、板厚が一定であるなら、たとえ発生したAE信号が1個であっても、それがある程度以上の距離を伝播した後には、複数個の波動モードが現われ、それらが分離されて観測される可能性のあることが理解される。ここで重要なことは、これらの板波の速度は周波数により変化することである。これは、縦波、横波などの実体波の速度が周波数に依存しないのと明らかに異なっている。それゆえ、板材でのAE源位置標定を行うに際し、この点を十分考慮する必要がある。
2.1.2.6 実測されるAE波形

AE発生源のモデルに直接関連した理論波形については、すでに本章の2.1.2.1で詳細に検討している。これらの波形は、複雑な反射等の影響を考えなくてでもすむ理想的伝播媒体において、微小な表面変位を定量的に計測可能な変位測定センサーを用いて初めて検出されたものである。しかしながら、実際のAE計測において、このような理想状態を得ることは非常に困難である。通常の計測では、実験室内においても、また実構造物においてはなおさらのこと、伝播媒体となる試験片や構造物の材質、形状、大きさなどにより、多重反射や減衰の影響を受けた複雑な形状のAE信号を、共振特性を持つセンサーで検出することになる。本節では、実測される波形がどのようなものであるかを知るために、試験片程度の大きさの伝播媒体において、シャープペンシル芯の圧折で擬似AEを発生させた時、一般的に用いられるAEセンサーで、実際にどのようなAE波形が検出されるのか検証する。

図2.1.42にAE波形の基本形が示されている。(a)は、白色雑音と呼ばれ、センサーを含むAE計測装置の熱雑音に起因したものである。AE信号が全く入力されない場合にも、常に背景雑音として観察される。通常、この雑音の影響を受けるずに有効信号を検出するために、S/N(信号/雑音)比が2倍(6dB)程度になるようにしきい値を設定して計測は行われる。(b)は連続型AEと呼ばれる。一次AE源としては塑性変形によるAEが、またリーコや機械的摩擦など大部分の二次AE源で生ずるAEが、この型の波形を与える。(c)は突発型AEである。最も普通に検出されるAE波形であり、塑性変形を除いたすべての一次AE源、すなわち、クラ
図 2.1.42 (a) 白色雑音 (b) 連続型 AE (c) 突発形 AE

図 2.1.43 シャープベンシル芯の圧折点から 2.5cm の距離で検出される AE 波形

（a）変位検定センサー （b）150kHz 共振型センサー （c）60kHz 共振型センサー

図 2.1.43 は、厚さ 4mm の鋼板上において、半径 2.5cm の円周上に、変位検定センサー、150kHz 共振型センサー、および 60kHz 共振型センサーを配置し、円の中心でシャープペンシル芯を圧折した時に、これらの異なるセンサーで検出された波形を示したものである。計測は、1kHz ～ 1.2MHz の周波数帯域で行われた。この計測では、特に到達波の初期部分に注目したため、それ以後については振幅方向に飽和が見られ、不正確な波形となっている。図 2.1.16 (a) で与えられた理論波形と比べると理解されるように、P 波の到着と R 波の到着が明確に判別できる。しかしながら、(b) の 150kHz 共振型センサー、および (c) の 60kHz 共振型センサーで検出された波形では、P 波の到着は明確に示されているが、それ以後の波形は飽和しているため、このままで表面波の到着を、読み取ることはできない。

図 2.1.44 は、3 種のセンサーを、半径 13cm の円周上に配置して、同様の操作を行って得た波形である。150kHz 共振型センサー (b)、および 60kHz 共振型センサー (c) で検出した波形では、P 波の到着と S 波の到着を識別できる。しかしながら、(a) に示される変位検定センサーの検出波形では、このセンサーの感度が共振型センサーに比べかなり小さいために、P 波の到着を判別することはできない。
(a) 変位測定センサー (b) 150kHz 共振型センサー (c) 60kHz 共振型センサー
図 2.1.44 シャープペンシル芯の圧折点から 13cm の距離で検出される AE 波形

(a) 150kHz 共振型センサー
(100 ～ 300kHz バンドパスフィルタ)
(b) 60kHz 共振型センサー
(20 ～ 100kHz バンドパスフィルタ)
図 2.1.45 検出される AE 波形に及ぼす共振周波数およびバンドパスフィルタの影響

た(b) と(c) に示される初動 P 波を比べた場合、位相は同じであるが、減衰のより小さな低周波数成分を測定する 60kHz 共振型センサーで検出された波形の方が、その振幅値は大きな値を与えている。

図 2.1.45 は、シャープペンシル芯の圧折による AE 信号を、100 ～ 300kHz にバンドパスフィルタをかけた 150kHz 共振型センサー (a) 、および 20 ～ 100kHz にバンドパスフィルタをかけた 60kHz 共振型センサー (b) で、それぞれ検出した場合の波形である。これらは、共振特性が著しく強調されており、たとえば図 2.1.44 に示されるバンドパスフィルタを用いないで検出された波形とは、極めて異なった形状となっている。したがって、雑音を除去する目的でバンドパスフィルタを通じて AE 信号を計測する場合には、本来の検出波形と比べ大きな変化を受けるので、このことを十分理解して解析を行う必要があります。

図 2.1.46 は、150mm × 150mm × 2mm の CFRP 板上で、シャープペンシル芯を圧折した時に、150kHz 共振型センサーで検出された波形である。入力した AE 動象数
図 2.1.46 CFRP 板内で多重反射を繰り返す AE 波の検出波形

は 1 個であるにもかかわらず板内の反射により、あたかも複数個の AE 事象が生じたかのような状況を示している。実際の計測では、最初の AE 信号を検出後、一定の不感時間（Dead Time / Hit Lockout Time）を設定することにより、こうした混乱を防ぐことが行われる。

以上示したように、検出波形は、使用するセンサーの周波数特性、フィルタ、媒体の伝播特性などに大きな影響を受ける。通常の AE 計測では、検出信号に事象（ヒット）処理を施し、その特徴パラメータを抽出することにより、パラメータ解析が、また反射などの影響を受けない検出波の初期部分のみに注目することにより、定量的波形解析が行われる。

2.1.3 AEパラメータ解析
2.1.3.1 AEパラメータとその情報

突発型 AE 信号の、パラメータ解析に通常用いられる信号処理パラメータは、（リングダウン）カウント、エネルギー、ヒット、イベント、AE 信号の振幅値（尖頭値電圧）、エネルギーーモーメント、信号立ち上り時間、信号継続時間などである。これらの発生履歴、頻度、相関、パターンなどを詳細に解析することにより、欠陥の発生条件や成長特性を調べることができ、またその識別がある程度行える。さらに AE センサー間の信号到達時間差をもとに、地震の震源地を求めるのと同じ要領で、AE 発生位置を決定できる。この解析は、いわば我々が木登りをしている時に、木が発する、ミシ・ミシという音の発生頻度や大きさをもとに、枝が折れないかどうか、危険はないとどうかを判断するのとよく似ている。

現在では、使用される AE パラメータの種類もほぼ固定化され、これに対応した AE 計測装置も手軽に手に入る。さらにソフトウェア技術の発達で、解析もリアルタイムで容易に行えるため、実験室における材料評価法として、また構造物